


IAGO, and the agents that run on it, employ strategies for generat-
ing and responding to offers, expressing and reacting to emotion, 
and revealing critical information about preference in a multi-
issue bargaining task negotiation scenario.  By constructing a 
sample study that pairs these agents against human participants 
recruited from Amazon’s Mechanical Turk (MTurk) service, we 
can generate results in a human-agent context that are comparable 
to human-human results.  These results show the implications for 
future agent design using the IAGO framework, and the experi-
mental benefits of conducting human-agent interactions in an 
online context, since the results are similar to what would be sug-
gested by the human-human negotiation literature.  By showing 
IAGO-designed agents performing an a human-agent study, we 
show that they should be able to perform at a similar or higher 
level to humans in negotiation games, based on real-world data 
collected from human-computer negotiation sessions.   

2. BACKGROUND 
Negotiation, whether it be between two humans, a human and an 
agent, groups of agents, or ever-more esoteric combinations, is a 
research topic that spans myriad scientific domains.  The human-
agent case in particular is a relatively new direction, and requires 
tools to promote its investigation.  Platforms must be developed 
upon which agents that interact with humans can be designed, and 
real-world data must be collected and reviewed regarding the 
interaction of humans with these new agents. 

One classical option for investigating human-agent negotiation 
takes the form of the multi-issue bargaining task, which is consid-
ered a de facto standard problem for research into social cognition 
and interpersonal skill training [26].  In the multi-issue bargaining 
task, two participants work to determine how to split varying is-
sues, each with hidden values to each side.  The task may involve 
distinct phases, where first information about preferences is ex-
changed, and then a series of offers are made.  The task is also 
often characterized by time pressure, which is often modeled as a 
decaying utility function.  Even with a small number of issues, the 
task can quickly become a challenge for agents to simulate, espe-
cially those which aim to act as partners for humans in such a 
negotiation in real time, and numerous works attempt to address 
the multi-issue bargaining task [8,9,14,23].  While this makes the 
multi-issue bargaining task a difficult challenge computationally, 
adding a human actor complicates issues even further, since hu-
mans often behave “irrationally” in game theoretic contexts. 

Many negotiation research foci attempt to simplify the problem by 
making protocols that strongly limit what information can be ex-
changed.  They often model information exchange as a costly 
endeavor by which every instance of interchange is modeled by a 
set “price” that reduces endgame utility values, (more commonly) 
refuse to allow information exchange at all, instead preferring to 
model opponent preferences using stochastic processes [2]. Other 
attempts require offers to alternate from one side or another, or 
specify that only full offers, wherein no items are left undecided, 
can be exchanged.  While these solutions allow for progress in 
limited human-agent contexts, and certainly have their benefits in 
agent-agent negotiation, they hardly resemble the freeform nature 
of actual human-human negotiation.   

Therefore, our work is motivated by an attempt to design agents 
that can practically negotiate with humans.  Agents, like humans, 
should make use of similar channels of communication, such as 
emotional exchange, preference utterances, and partial offer ex-
change.  These agents should use human techniques, likes the 
exchange of informal favors [17], or the use of anger in negotia-

tion to secure value [6].  Ideally, agents should be able to build 
trust over time with repeated negotiations, and should recognize 
past betrayals and alliances.  These features are key to solving 
age-old negotiation challenges, such as what Kelley calls the “di-
lemma of trust” and the “dilemma of honesty” [13,27]  However, 
there exists no platform upon which these challenges may be read-
ily explored (to the authors’ knowledge) in the human-agent inter-
action context. 

To wit, the dilemma of honesty refers to the idea that true infor-
mation about oneself, whether that be preferences in a negotiation, 
or how much one loses if the negotiation falls through, is very 
valuable to keep secret.  Even without considering the possibility 
of lying about said information, which may lead to long term 
harms to trust, there is still much to be said about when and how 
much information should be shared.  Therefore, any platform 
which attempts to address this dilemma should have a robust 
method for exchanging preferences and other valuable pieces of 
information.  Ideally, this should resemble human-human negotia-
tion as much as is possible. This includes providing multiple natu-
ral language ways to express the same logical fact: e.g., “I like the 
apples better than the oranges”, versus the equivalent “I like or-
anges less than apples”, or the similar but slightly more informa-
tive “I like apples best”, which IAGO attempts to address. 

The dilemma of trust is equally important, as it requires agents be 
able to judge the truth of statements they receive.  To understand 
the dilemma of trust as it applies to negotiation, a good under-
standing of how and when humans lie is required.  Any platform 
that would attempt to address this thorny issue should be able to 
provide a detailed history of past statements and questions, as well 
as bargaining history and other details.   While a worthy subject, 
it is not the thrust of the sample agents in this research, which take 
information at face-value [15,18]. 

Once the agents have been designed based on these empirical 
observations, they must also be tested in the field against actual 
humans.  While humans often treat agents differently than their 
human counterparts or even human-controlled avatars (agents are 
often subject to outgroup effects) [4,10], virtual agents that exhibit 
human-like features such as emotion or natural language are often 
treated in a near-human way.  To that end, a platform for design-
ing agents and hosting negotiations between them and humans 
must needs have the ability to manipulate channels of communi-
cation used by humans. 

Previous efforts to allow for effective human-agent negotiation 
include the multi-issue bargaining task game, Colored Trails 
[11,20], its web-based cousin WebCT [17], as well more natural-
language focused approaches such as NegoChat [22].  However, 
these platforms tend to focus on a single channel of communica-
tion, such as the exchange of formal offers or natural language 
messages.  None of them include an emotional channel wherein 
deliberate information about a player’s emotional state can be 
exchanged.  For these reasons, we present the IAGO platform, 
which has multiple channels of communication and is designed 
specifically to be deployed for human-agent interaction over the 
web.  Using this framework, it is hoped that agents can be de-
signed that will answer the questions of human behavior and in-
teraction with agents in a negotiation context. 

3. SYSTEM DESIGN 
3.1 IAGO Platform 
To describe the design behind our agents, it is important to under-
stand the basic guiding principles behind IAGO, the online plat-



form on which they run.  IAGO boasts a number of design princi-
ples that make it suitable for human-agent negotiation.  These 
design principles are: 

1. It must support current web-standards and require little to no instal-
lation of complex support software on a user’s machine. 

2. It must deploy a well-defined API that allows both agent designers 
and negotiation game designers to easily create and specify behav-
iors for the purposes of competition/research. 

3. It must support currently unexamined aspects of human-human ne-
gotiation in a human-agent context. Specifically, this must include 
partial offers, visual representation of emotional signals, and rela-
tive preference elicitation/revelation. [16] 

The design of IAGO is such that it can be used by a human partic-
ipant through a web browser. Actions taken by the user, such as 
crafting an offer to send to the agent, or commenting on the quali-
ty of previous deals, are sent via an HTML5 GUI through a Web-
Socket and onto the agent code, which is hosted as a Java Web-
Servlet on any Tomcat 7 or newer server.  This structure allows 
any participant to simply be given a URL to a running IAGO in-
stance, and requires no installation on any client machine.  Fur-
thermore, as an added benefit, the agent designer wishing to build 
IAGO instances can do so in a cross-platform manner, requiring 
only a single .jar file and a Tomcat installation to begin work. 

The second and third design principles are encapsulated by the 
Event system used in IAGO.  While extensive description of each 
of the functions available in the API is impossible herein, IAGO 
can generally be described as allowing for rule-based agent design 
in reaction to a set of distinct events: 

1. SEND_MESSAGE 
2. SEND_OFFER 
3. SEND_EXPRESSION 
4. TIME 
5. OFFER_IN_PROGRESS 
6. FORMAL_ACCEPT 

From there the agent designer makes decisions on how to react to 
the event.  For example, upon receiving a SEND_EXPRESSION 
event with content indicating that the player was expressing sad-
ness, the agent could decide to adopt a shocked expression itself, 
and then create a new counter-offer a few seconds later. 

While agents are able to manifest the emotion channel through the 
SEND_EXPRESSION event, they are similarly able to interact 
using offers and natural language messages using the 
SEND_OFFER and SEND_MESSAGE events, respectively.  It is 
important to highlight a particular class of message utterances 
subsumed under the SEND_MESSAGE Event.  These utterances 
take the form of comparing the point values of one or two items.  
Example utterances for this game included “I like the bars of iron 
more than the shipments of bananas.” or “Do you like the ship-
ments of spices best?”  Preference utterances could use any of 5 
relational operators: greater than, less than, equally, best, or least.  
Furthermore, utterances could be either queries or statements, 
allowing for a total of 2 * 5 = 10 types of preference utterances.  
These preference utterances are often considered to be “valuable” 
information, as they reveal some information about the point val-
ues of the opponent, and are an important part of designing the 
information exchange policies of an agent. 

Agents have full control over the timing of their actions through 
use of the TIME event—for example, agent designers may sched-
ule events to occur only after a specified number of seconds have 
passed.  Whereas an agent-agent system would be limited only by 
the bandwidth and latency of communication between the two 

partners, IAGO agent designers must be aware of the physical and 
mental limitations of their human partners.  Humans are not capa-
ble of processing dozens of offers per second, and tend to read 
data from multiple channels simultaneously.  It may prove more 
effective to program an agent to smile for a few seconds, then 
wait before sending an offer and a comforting message.  Indeed, 
IAGO negotiations can be characterized by the usage of their idle 
periods nearly as much as by the Eventful sections. 

The final two Events as listed above bear brief mention.  OF-
FER_IN_PROGRESS is used as a cue that the human or agent 
player is considering sending an offer but has not done so yet.  An 
agent designer can use this to avoid overwhelming a human play-
er, or (conversely) to interrupt them in advance of receiving an 
expected poor offer.  Visually, the human views the agent version 
of this event as a flashing ellipsis in the chat menu, like many 
instant messaging programs.  Secondly, the FORMAL_ACCEPT 
Event is used to finalize the distribution of the task items and end 
the negotiation.  More notably, there is no “casual accept” event, 
since IAGO is designed to mimic human negotiations, where pre-
viously agreed-upon terms may often be retracted or modified 
with no formal penalty. 

3.2 Agent Design 
Agents designed for IAGO implement several policies to catego-
rize their response to different events.  Ideally, these policies 
should work together to determine the full behavior of an agent 
throughout the entire negotiation.  Often, there is substantial over-
lap, as even an event as simple as sending an offer may involve 
natural language, offer evaluation, and emotional reaction in a 
single response.  As such, these division are recommended, but 
not enforced, when deciding to create agents. 

3.2.1 Offer Exchange 
BehaviorPolicies determine the type of offers that agents will 
accept and craft to send to their human partner.  Although “ac-
ceptances” and “rejections” of offers are allowed by either party, 
the IAGO framework does not enforce these in any way.  Agent 
developers may choose to adhere to previous agreements within a 
negotiation if they choose, but only the final, fully-distributed full 
offer is locked in (accepting this “formal offer” ends the game).  
BehaviorPolicies are perhaps the most comprehensive policies 
supported by IAGO since they tend to define both incoming and 
outgoing offers. 

3.2.2 Information Exchange 
MessagePolicies determine the language agents use.  This can be 
in reaction to the set of pre-selected chat utterances or any other 
event.  Commonly, both the BehaviorPolicy and the MessagePoli-
cy are invoked when the player sends an offer, as the agent must 
decide if it wants to accept, reject, or ignore the offer, as well as 
what it should say (e.g. “Yes, that offer sounds good to me!”).   

3.2.3 Emotion Exchange 
Finally, the ExpressionPolicy determines what emotions are 
shown by the agent.  Emotions are sent in two ways.  First, the 
portrait of the agent will change—for example, to display “hap-
py”, the agent will show a smiling version of its avatar.  Second, 
an emoticon is sent through the chat that expresses the selected 
emotion.  It is important to distinguish that “emotions” are not 
literally sent, but rather “expressions of emotions”.  There is no 
automatic detection of user emotions, nor is the agent designer 
under any compunction to show emotions that realistically corre-
spond to the simulated mental state of the agent (or to show emo-





When receiving an offer, agents check if the offer is both “locally 
fair” as well as “globally fair”.  Local fairness refers to the offers 
itself being fair, while global fairness refers to the current state of 
the board (taking into account all offers so far) being fair.  Again, 
the agent determines human preference the Minimax Preference 
Algorithm.  Then, it determines if the currently proposed offer 
would boost the human more than it would boost the agent.  The 
agent must have >0 positive benefit, and there is a window equal 
to the number of issues wherein the agent would consider the 
offer “locally fair”.   In our example of a 4-issue game, the agent 
would consider an offer that increased its points by 7 and the hu-
man’s points by 10 to be “locally fair” as 10 – 7 < 4.  To deter-
mine global fairness, the agent follows the same procedure but 
instead looks at the entire offer board as it stands based on prior 
acceptances.  If the offer is considered fair on both counts, it is 
accepted.  Otherwise, it is rejected, although agents do have 
unique dialogue for if it is considered locally fair but not globally 
fair. 

4.1.2 MessagePolicies 
The agents all attempt to gain information about their partner’s 
preferences in the form of relational utterances.  This can take the 
form of occasionally asking direct questions about preferences, or 
reconfirming information already gathered.  For example, all 
agents respond to one user utterance by reiterating: “Your favorite 
item is ___, right?” assuming the favorite item has been deter-
mined by this point (at which point the blank would be filled in by 
a description of the item). 

One core principle of all the four agents is that they never lie, and 
further, always assume that their partner is telling them the truth.  
Although the value and ethical complexities of lying in negotia-
tion are well established [1,12,25], these first designs are more 
straightforward in their approach to information.  If, at any point, 
the agents determine that the information given to it by the player 
is somehow contradictory (for example, if a player claims both 
that an item is their most valuable, but also that it is valued less 
than another item), the agent will reconcile its history of state-
ments and point out the discrepancy to the player.  All agents use 
the Consistency Algorithm to do this (see below), although they 
differ in the tone of the messages associated with it. 

4.1.3 ExpressionPolicies 
The expression policies have little in common between the nice 
and nasty agents.  However, they do share the same basic timing.  
When the agent receives a negative or aggressive statement from 
the player, such as “Your offer sucks!” they will respond with

some sort of emotional response.  Similarly, the agents respond to 
positive statements.  Finally, the agents also respond based on the 
trend of the offers received from the human player; if the offers 
have been getting better, the agents react one way, but if the offers 
have been getting worse, the agents react differently. 

4.1.4 Consistency Algorithm 
The algorithm used to check for consistency in preference state-
ments is fairly straightforward.  Whenever a new preference 
statement is uttered by the human player, all agents log that state-
ment in an ordered queue.  Then the agent attempts to reconcile 
per the following procedure: 

 

1. Start with the list of all possible permutations of value 
orderings.  In a 3-issue game, for example, this list 
would be [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], 
and [3, 2, 1]. 

2. For each preference statement, eliminate contradictory 
orderings. 

3. If there are no orderings left, see if dropping the oldest 
preference in the queue would create orderings. 

4. Continue until the end of the queue is reached. 
a. As soon as one is found, notify the player 

which preference statement was dropped. 
b. End the iteration. 

5. If only removing the most recent preference statement 
would rectify the orderings, then drop the entirety of all 
preference history and notify the player. 

4.1.5 Minimax Preference Algorithm 
This algorithm makes use of the results of the Consistency Algo-
rithm above.  After running the Consistency Algorithm, the agent 
checks the remaining valid orderings.  For example, if the poten-
tial human orderings are (1 being the top choice, 4 being the last 
choice): 
 
A: {4, 3, 2, 1}, B: {3, 2, 4, 1}, C: {4, 1, 3, 2} 
 
It will determine which one is worth the most points to itself and 
assume that to be the true ordering until corrected.  For example, 
if the agent prefers 1 best, it will most likely pick ordering A or B 
due to 1 being worth the least to the player.   The agent will as-
sume this is the true human ordering until a new preference state-
ment is revealed, at which point the algorithm must be rerun.  In 
this way, the agents behave “optimistically”, in that they assume, 
given equally likely unknown distributions, the correct distribu-
tion is the one that will end up favoring them the best. 
 

Table 3. Nice vs. Nasty Language (Non-comprehensive) 

Event Nice Language Nasty Language 

Agent rejects offer I’m sorry, but I don’t think that offer is fair to me. That’s not fair. 

User says “It is important that we are both 
happy with an agreement.” 

I agree!  What is your favorite item? I suppose, if you want to be all ‘flowers and sun-
shine’ about it.  What item do you want the most? 

User says “Why don’t you make an offer?” Sure!  Let’s see how this sounds… Thought you’d never ask… 

User says “This is the very best offer possi-
ble.” 

Ok, I understand.  I do wish we could come up with some-
thing that is a more even split though. 

Oh really? That’s pretty sad.  I think you could do 
better. 

User sends an “angry” emoticon I’m sorry, have I done something to upset you? What’s wrong? 

User does nothing for several seconds Can I provide more information for us to reach consensus? Are you even still there? 
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