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Abstract
We present the results of a machine-learning approach to the analysis of several human-agent negotiation studies. By com-
bining expert knowledge of negotiating behavior compiled over a series of empirical studies with neural networks, we show 
that a hybrid approach to parameter selection yields promise for designing more effective and socially intelligent agents. 
Specifically, we show that a deep feedforward neural network using a theory-driven three-parameter model can be effective 
in predicting negotiation outcomes. Furthermore, it outperforms other expert-designed models that use more parameters, 
as well as those using other techniques (such as linear regression models or boosted decision trees). In a follow-up study, 
we show that the most successful models change as the dataset size increases and the prediction targets change, and show 
that boosted decision trees may not be suitable for the negotiation domain. We anticipate these results will have impact for 
those seeking to combine extensive domain knowledge with more automated approaches in human-computer negotiation. 
Further, we show that this approach can be a stepping stone from purely exploratory research to targeted human-behavioral 
experimentation. Through our approach, areas of social artificial intelligence that have historically benefited from expert 
knowledge and traditional AI approaches can be combined with more recent proven-effective machine learning algorithms.

Keyword Human-computer interaction · Human-subjects research · Machine learning · Neural networks · Expert models of 
human behaviour · IAGO negotiation platform

1  Background and motivation

1.1  Social AI and machine learning

Increasingly, artificial intelligence is being used to solve 
ever-more complex problems—such as those that involve 
understanding and reacting to human behavior. Interest has 
grown in artificial agents that can serve as representatives 
in negotiation [24], personal assistants [26], teachers, [18] 

and analysts of consumer behavior [28] as well as political 
affiliation [27, 31]. These new domains of interest for com-
putational agents present exciting new problems, especially 
given the breakneck pace of progress in machine learning 
(ML) approaches in a variety of nearby problems (e.g., natu-
ral language understanding/generation).

But, there are stumbling blocks. While studies and data-
sets that examine ecologically valid human behavior are 
numerous, they are also often 1) small 2) messy 3) feature-
rich and 4) (often) proprietary. This presents a problem for 
existing machine learning approaches which aim to predict 
social outcomes, as existing feature selection approaches 
that rely on purely automated techniques may have poor 
accuracy or suffer from overfitting. What may have once 
begun as straightforward classification problems in machine 
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learning are often difficult in social datasets, which are often 
“wider” than they are “deep”.1

However, we argue that these problems can be addressed 
by integrating classical AI techniques as well as domain 
knowledge from the fields that have heretofore been highly 
active in analyzing human behavior historically: psychology 
and behavioral economics. To wit, we describe a particu-
lar thorny domain that has been described as a “challenge 
problem” for socially-aware AI and user interfacing: human-
agent negotiation [3]. We first present the background of 
this problem, then present the results of a blended ML and 
expert-modeling study that shows the efficacy of our method.

1.2  Human‑agent negotiation: challenge problem

Negotiation is a complex human social task that requires 
a diverse set of skills: from strategic planning to rhetori-
cal argument. And while structured negotiation is still a 
relatively uncommon activity, most people engage in some 
degree of negotiation quite often—from deciding what to 
eat for dinner with a group of friends, to negotiating a job 
offer, to making a customer service request. Regardless of 
the domain, negotiation plays a critical role in human inter-
action. Research shows that people who are highly skilled 
negotiators tend to receive better salaries [14], and negotia-
tion training pedagogy has long been the domain of prestig-
ious business prep courses [6].

While negotiation has been traditionally seen as a 
uniquely human problem, that perception is quickly chang-
ing. As current technological tools continue to evolve into 
ever-more sophisticated artificial agents, humans find them-
selves relying on increasingly human-aware agents to inter-
act with the world around them. Designing artificial agents 
that are capable of engaging in human-like negotiation has 
become a particularly challenging problem for researchers 
across a number of subfields, since it involves a variety of 
computational challenges, from social awareness to user 
modeling to learning [3]. In some cases, these new agents 
are designed to be high-fidelity simulacra of humans them-
selves, enabled to act with all the foibles of their mortal 
antecedents; in others, these agents merely need to under-
stand and anticipate human negotiating behavior. Negotiat-
ing agents can act as representatives to humans, automating 
online bidding [2], providing the moral core to autonomous 
vehicles [5], and even negotiating the time of appointments 
for their users [26].

Currently, many of these agents are designed based on 
existing psychological/behavioral models of user behavior 

in negotiation (for example, see [21]). These agents draw 
from an immense literature on effective negotiation strate-
gies in the business, psychology, and behavioral economics 
corpora. As these neophyte automated agents continue to 
negotiate with humans, however, they generate a massive 
amount of behavioral data. As such, analysis of human-agent 
interaction through machine learning approaches is becom-
ing increasingly feasible.

While there are many reasons to have socially-capable 
agents, one key challenge is to use them to predict the out-
comes of negotiation—can an agent predict the outcome 
of a negotiation as it is happening (and perhaps, one 
day, adapt to it)? But even when the stated goal is merely 
to predict the outcomes of negotiation, machine learning 
approaches are not panaceas. Human-agent negotiating data-
sets have a tendency to be “wide and short”, with hundreds 
of behavioral and process variables being tracked, but rela-
tively few subjects (due to the difficulty in conducting mas-
sive user studies). These problems lead to very noisy inputs 
into traditional machine learning algorithms, and make fea-
ture selection a chancy proposition at best. However, the 
possibility of rapid recruitment of human subjects through 
online platforms (such as Amazon’s Mechanical Turk) and 
the increase in platforms for online human-agent interaction 
in social tasks has slightly ameliorated these problems [1, 
23].

Still, even with overfitting precautions, there is a danger 
of blind application of algorithms to social computing prob-
lems. Fully “black-box” solutions do not generally allow for 
explainable AIs, which are increasingly in demand where the 
intersection of humans and computers are concerned. Where 
explainability is lacking there is danger of running afoul of 
legislation [15], drawing entirely incorrect conclusions [8], 
or at the very least failing to distinguish between seemingly 
similar classifiers [20, 29].

We therefore propose a hybrid approach for the analy-
sis and development of agents in human-agent negotiation. 
By inputting expert knowledge of the domain into machine 
learning algorithms, we effectively create “priors” that allow 
these algorithms to more accurately account for input noise 
without needing massive numbers of data points. From the 
side of model-driven AI, this also allows for us to quickly 
and effectively evaluate a variety of potentially relevant 
behavioral parameter sets, while also circumventing some of 
the limitations of traditional evaluation approaches. To wit, 
much work in human behavioral examination in psychology 
has been done via traditional statistical analysis techniques, 
including hand-designed significance testing [17]. These 
methods have both practical (e.g., time) and methodological 
(e.g., statistical power loss) limitations. Indeed, creation of 
linear regression tests for more than three interaction terms 
quickly becomes impractical [10]. Therefore, techniques 
derived from machine learning provide tangible benefit, as 

1 “Wide” datasets have numerous measurable variables, while “deep” 
ones have many entries. Social dataset often have lots of variables to 
track but relatively few participants.
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they allow automated and rapid evaluation of hypothetical 
behavioral models, thereby allowing for the creation of data-
driven, model-informed AIs.

Much of the study of negotiation in general, and human-
agent negotiation specifically, has focused on the application 
of certain techniques that will be effective in creating or 
claiming value in negotiations. This can entail such tech-
niques as strategically withholding or sharing private infor-
mation about preferences [30], using positive or negative 
emotion to manipulate other parties [12], or accurately mod-
eling opponent preferences and crafting offers which “grow 
the pie” by finding integrative potential [11].

The remainder of this work primarily examines data from 
a set of three human-agent negotiating experiments con-
ducted on the Interactive Arbitration Guide Online (IAGO) 
negotiation platform [23]. We show that a theoretically-
sound and minimal-parameter neural network outperforms 
other models that use more simplistic approaches (linear 
regression) or more parameters (including those that are 
strict supersets). We also show the suitability of neural net-
works in general over other learning algorithms (such as 
XGBoost).

Extending this work, we then apply similar analysis to 
a larger dataset (inclusive of the first). Here, we show that 
as the number of data points increases, different classes of 
learning algorithm surface as most effective. We addition-
ally perform new analysis predicting additional outcomes 
(specifically, the duration of the interaction) by examining 
the behavior measures that can be captured on-the-fly.

1.3  Models of human behavior

The goal of much of human-agent negotiation work is to 
predict outcomes using process measures found within 
the negotiation—observable parameters such as numbers 
or types of offers sent by each party. By predicting these 
outcomes in aggregate, we are able to design strategies 
that integrate this information on-the-fly, leading to more 
successful negotiation strategies, as well as insights about 
human behavior in negotiation scenarios. To this end, hun-
dreds of variables may be tracked in an average human-agent 
negotiation (in this dataset, specifically, over 200). These 
variables include a variety of types:

• Process measures—number of messages sent by each 
party, emotional expressions detected, offer numbers and 
types, etc.

• Strategy variables—policies used by negotiating agents, 
such as whether they use emotional manipulation or 
attempt to withhold key information

• Demographic/Self-report variables—answers to survey 
questions by users, such as ratings of rapport or realism, 

and answers to psychometric surveys (e.g., Social Value 
Orientation or Machiavellianism) [25]

We focus on the first two types primarily in this work.
In a classical behavioral study, one or more strategy vari-

ables may be manipulated experimentally in order to see the 
resulting change on outcomes. There are a number of papers 
in this vein, which have discovered notable results that are 
key to the development of effectively social agents [2, 7, 12, 
13]. Multiple regression is then performed to determine if 
there are any first-order or interaction effects on the depend-
ent variables. However, this approach has limitations—tradi-
tional regression becomes untenable beyond a few independ-
ent inputs, as the statistical power quickly becomes weak. 
Furthermore, this method supports only linear combinations 
of variables, and any model which violates this assumption 
requires alternative approaches. Machine learning provides 
alternatives to this procedure through the construction of 
neural nets, but suffers from a sensitivity to noise in the data. 
Furthermore, in datasets that contain hundreds of potential 
input variables, a brute force approach to analysis (even with 
feature selection techniques) becomes absurd.

In our approach, we aim to predict outcome metrics of a 
negotiation based on a series of theory-driven agent models 
that contain measurable process parameters. For each agent 
parameters set, we wish to predict several outcome metrics 
of the negotiation as indicated by the target columns below.

• Scalar targets (unbounded numbers): agent points, user 
points, Nash points, and total points

• Percentage targets (bound to the range [0,1]): agent point 
%, user point %, total point %

• Binary target: isPerfect: a true/false value for determining 
if the negotiation solution is Pareto Optimal; i.e., no side 
of the negotiation could unilaterally do better without 
hurting the other side

These outcomes represent traditionally important results 
from a negotiation—by examining individual points such as 
agent points and user points, it is possible to objectively meas-
ure how well one side of a negotiation performed. However, 
by also tracking joint measures such as Nash points (product 
of user and agent points) and total points (sum of user and 
agent points), a sense of how much the negotiation resulted in 
“value creation” can be measured. This is an equally important 
in integrative scenarios, where the measurement of interest 
may be a sense of “cooperation” between participants, since 
negotiation is almost always a mixed-motive game. The per-
centage targets represent the same points as portions of the 
total amounts of points available (which helps make the data 
more domain-agnostic). In our first set of analyses (which 
cover the “Initial” Dataset), we focus on both sets of targets. 
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In the second set, we focus on the percentage targets only. 
More details on this focus is provided in Sect. 2.1.

While many models of human behavior rely on a number 
of topics and variables relevant to negotiation, including per-
sonality [25], in this work, we focus on a smaller subset. These 
variables generally deal with functions of the agents them-
selves (how they act) or with processes of the negotiation (how 
many times an act occurred). These variables are summarized 
and explained in Table 1.

1.4  Negotiation platform

In this work, we conduct examine negotiations conducted 
using the IAGO negotiation platform, as designed by Mell 
et al. [22]. IAGO negotiations are conducted online, using 
crowdsourcing technologies (such as Amazon’s Mechani-
cal Turk) to recruit subjects. The IAGO platform features an 
embodied virtual agent, as well as a text-based interface. The 
agent is capable of displaying emotion through the use of a 
visual avatar, and communicating using a chat-style interface. 
A virtual “negotiation table” is included in the platform, which 
allows the customizable creation of various types of multi-item 
negotiation scenarios. Users can move items on the board, dis-
play their own emotions through emoticons, and communicate 
with the agent. The agent can also take on a variety of different 
physical traits, by loading one of 4 predefined characters (vary-
ing in gender and photo-reality).

2  Experimental design

2.1  Datasets

The data used in this review is divided into two sets: the 
initial set, and the full set (a superset of the former). The 
initial set comprises 485 subjects (163 male, 126 female, 
196 did not report.) collected over a series of 3 different 
human subjects studies. These studies were all conducted 
on the IAGO platform, a system for facilitating human-
agent negotiation data collection, as well as the design of 
agents that use expert strategies to conduct negotiation 
[22]. IAGO automatically collects over 200 individual data 
columns for each participant (of which a handful were 
curated as being relevant by our negotiation expert). These 
columns are shown in Table 1.

Parts of this dataset have been used to analyze the 
behavior of agents pursuing different strategies of emo-
tional manipulation and strategic information holding 
[23]. Other parts were collected for unrelated studies. In 
all cases, the studies were subject to ethical review by the 
originating university’s Institutional Review Board, and 
the anonymous data was subsequently shared with us.

The full set includes both the initial set as well as an 
additional 769 subjects from two additional studies. These 
subsequent studies vary slightly in structure from the 

Table 1  Variable descriptions Variable Name Description

nice A binary agent variable that describes the emotions the agents used
withholding A binary agent variable that describes how the agents revealed information
competitive A binary agent variable that describes if the agent reluctantly gave ground 

or built consensus
numUserOffers The number of offers the human sent
numAgentOffers The number of offers the agent sent
numUserMsg The number of messages the human sent
numAgentMsg The number of messages the agent sent
numUserHappy The number of happy emojis the user sent
numAgentHappy The number of happy emojis the agent sent
numUserAngry The number of angry emojis the user sent
numAgentAngry The number of angry emojis the agent sent
numUserEmote The number of total emojis the user sent
numUserMsgOnly The number of non-preference messages the user sent
numUserCombined The number of preference messages the user sent
gameEndTime The time, in seconds, when the negotiation concluded due to agreement



Journal on Multimodal User Interfaces 

1 3

previous three, and allow us to examine the efficacy of our 
initial models on this more diverse (and larger data set). As 
will be described, we find that the most successful models 
change as the size of the dataset grows, which leads to dif-
ferent recommendations based on the dataset size.

In all studies, the participants engaged in a multi-issue 
bargaining task with an IAGO agent, and attempted to maxi-
mize their own points. This standard task involved splitting 
up a number of items between the participants, while the 
value of the items was unknown to the opposing party. Par-
ticipants were able to interact with the IAGO agent using 
pre-formed text responses in a dialogue tree. They were also 
able to move items on a virtual “table” to indicate their vari-
ous offers, and were able to express their emotions using 
emoticons (the agent was an embodied head-and-shoul-
ders character, who emoted back with prototypical facial 
expressions).

Participants were incentivized with real-world mon-
etary lottery tickets to a cash pool based on their score at 
the end of the interaction. Several different types of agents 
were used; their behavior varied according to a number of 
dimensions including use of emotion, use of competitive 
bargaining techniques, and willingness to discuss strategic 
information (such as preferences and utilities). All studies in 
the initial set (coincidentally) involved a negotiation over 20 
individual items, however the relative values of these items 
varied between the agent and the human, as well as between 
studies. The full set did differ in the amount of items and 
their point values—as such, analysis of the full set included 
only the percentage targets (which are meaningful given they 
are normalized measures), and eschews analysis of the sca-
lar targets (which are not normalized). Nevertheless, in all 
studies, it was possible to “grow the pie” by finding issues 
across which there was integrative potential. Note that the 
structure of the task (the point values of the issues, e.g.) 
is not a feature of the learning, since this information is 
not fully observable by an agent. Future work may include 
examination of partial structural parameters by differentiat-
ing between those terms which are and are not observable 

(for instance, the agent could legitimately view its own point 
values), but we do not consider that distinction in this work.

The studies were all broadly similar, featuring agents that 
had the same visual fidelity (but occasionally did have dif-
ferent genders). There were some specific differences. Spe-
cifically, the first (initial set) of data included the results 
of three experiments. These experiments all contained an 
agent that were visually identical. The agent’s behavior var-
ied according to its emotional behavior, competitive bargain-
ing strategy, and its willingness to withhold information. As 
previously stated, there was an integrative solution wherein 
both parties could do well.

The full set of data included the results of two additional 
experiments. The first experiment varied similar metrics, 
but also changed the agent’s perception of the problems 
(it was initialized with priors that led it to believe there 
was no integrative potential, in some cases). The second 
experiment contained data from the Automated Negotiating 
Agents Competition (ANAC), and therefore contained sev-
eral researcher-created agents, all competing on an identical 
negotiation game.

2.2  Parameter set creation

Based on existing theories of negotiation, we designed 7 
parameter sets that served as basic models in order to predict 
negotiation outputs. The parameters in each set are listed in 
Table 2. Our first three parameters sets explored different 
combinations of information about the player and the agent. 
KnowThineEnemy focused on user variables that agents 
could track about the human, while being completely agnos-
tic about the agent’s own behavior. KnowAll included all 
the information from KnowThineEnemy, but also included 
parameters that defined how the agent acted—in short, 
the agent was aware of its own trends in its behavior. This 
included information about how the agent acted in its use of 
emotion (nice), information revelation strategy (withhold-
ing), and general offer structure (competitive). Thirdly, 
Self-Reflection included only information on the agent itself, 

Table 2  Models and parameters

Set name Parameters

KnowThineEnemy numUserOffers, numUserMsgOnly, numUserCombined, numUserHappy, numUserAngry
KnowAll nice, withholding, competitive, numUserOffers, numUserMsgOnly, numUserCombined, numUser-

Happy, numUserAngry
Self-Reflection nice, withholding, competitive, numAgentOffers, numAgentHappy, numAgentAngry, numAgentMsg
Emotional nice, numUserHappy, numUserAngry, numAgentHappy, numAgentAngry
Strategic competitive, numUserOffers, numAgentOffers
Chatty withholding, numUserMsg, numAgentMsg
EverythingMakesSense nice, withholding, competitive, numUserOffers, numAgentOffers, numUserMsg, numAgentMsg, 

numUserHappy, numAgentHappy, numUserAngry, numAgentAngry
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including all the aforementioned strategy measures as well 
as a number of the same process variables, but for the agent’s 
side.

The second set of three parameter sets included models 
that focused on one particular channel of communication. 
Emotional, for example, looks at variables relating to human 
and agent affective choices, like the use of anger and hap-
piness. It also included nice, the parameter governing this 
behavior within the agent. Chatty focuses on the idea that 
the messages exchanged in negotiation may be predictive 
due to their effect on rapport between the human user, and 
thus includes both message quantity variables as well as 
the agent strategy variable withholding. Finally, Strategic 
focuses on examining the strategy of the agent in making 
offers (competitive), and the quantities (but not types) of 
offers exchanged by both parties. The final model, Every-
thingMakesSense simply included all the variables—this is 
the most likely model to be attempted by someone with little 
awareness of negotiation theory. While each of the param-
eters it contains do have some basis (i.e., they all do relate 
in some way to negotiation), simply adding them all at once 
is brute force approach. Therefore, it serves as a reasonable 
baseline for “traditional” machine learning approaches—
improved in the sense that it does involve expert-generated 
variables, but not crafted with a particular psychological 
model in mind.

2.3  Machine learning methodology

We compared the parameter sets above by using three 
machine learning methods on the cleaned subset of data 
gathered from experiments. The data from our user experi-
ments was cleaned to include the union of rows where each 
model’s input columns and targeted prediction columns did 
not have any missing values. As an example of this, the ini-
tial experiment included some entries that did not track the 
number of times the user expressed happiness. Later experi-
ments did, but we excised rows missing this value variable 
as it was not present in the union of the two sets. In this way, 
we followed standard procedure for preparing a null-free 
set—eliminating all data points where the targeted predic-
tion or input columns contained a missing value.

This resulted in 289 data points to train the machine 
learning methods in the initial set, and 654 data points in the 
second set, for a total of 943 cleaned interactions in the total, 
combined set.2 For each of the parameter sets, we trained a 
linear regression baseline, an XGBoost [9], and a Deep Neu-
ral Network (DNN) to compare predictive performance of 

the specified input variables to the target scalar, percentage, 
and binary columns. This resulted in 7 (parameter sets) × 3 
(ML algorithm) = 21 learning models.

We utilized k-folds cross-validation to compare machine 
learning methods across models, where k = 10 (based on 
[19]). This means the dataset was randomly split into 10 
subsections, where 9 subsections are combined as the train-
ing set and 1 is left as the validation set for calculating mean 
square error (MSE)/root mean square error (RMSE) and fill-
ing in the predicted values. This training process is repeated 
10 times such that the machine learning method is able to 
make test predictions for every row in our dataset. This pro-
cedure was replicated similarly for the full set.

Our linear regression baseline was implemented using 
scikit-learn,3 and a separate linear regression was fit for each 
target column using all of the input columns specified by 
the model.

XGBoost was chosen as another comparison due to its 
successes in Kaggle competitions [16]. XGBoost functions 
by sequentially fitting weak learners (such as decision trees), 
then using gradient descent to learn the split parameters for 
the tree nodes. We created separate XGBoost regressions for 
each scalar target column, and separate XGBoost classifiers 
for each percentage target column to keep the output in the 
range [0,1]. The XGBoost classifier objective function is 
binary-logistic and can be interpreted as a probability out-
put. This probability output is being trained against a [0,1] 
target, which can also be interpreted as a probability. To 
parameterize both XGBoost regression and classification, 
we used maximum depth = 7, learning rate = 0.08, number 
of estimators = 100, and subsample = 0.9. The subsampling 
parameter was used to help prevent overfitting.

Lastly, we used a DNN to compare model performance. 
Deep learning has gained popularity for its ability to create 
higher-level representations of input features [4]. Our DNN 
consisted of Feedforward layers interleaved with Dropout 
noise to reduce overfitting. We used Keras4 for hyperparam-
eter experimentation to find number of layers, layer sizes, 
activations, and learning rate. The DNN we used was param-
eterized with the following layers:

• Feedforward (256 units, SELU activation, Glorot uniform 
initialization) Alpha Dropout (0.4 noise)

• Feedforward (256 units, SELU activation, Glorot uniform 
initialization) Alpha Dropout (0.4 noise)

• Feedforward (128 units, SELU activation, Glorot uniform 
initialization) Alpha Dropout (0.4 noise)

• Feedforward (128 units, SELU activation, Glorot uniform 
initialization) Alpha Dropout (0.4 noise)

2 Since not all experiments contained the same inputs, statistical dif-
ferences in the retention rate of data after cleaning (289/485 = 60% vs. 
654/769 = 85%) are to be expected.

3 https ://sciki t-learn .org/.
4 https ://keras .io/.

https://scikit-learn.org/
https://keras.io/
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• Feedforward (64 units, SELU activation, Glorot uniform 
initialization) Alpha Dropout (0.4 noise)

• Feedforward (64 units, SELU activation, Glorot uniform 
initialization) Alpha Dropout (0.4 noise)

For predicting the scalar target columns, we used the 
DNN specified above with an added Feedforward (4 units, 
Linear activation, Glorot uniform initialization) layer for the 
final outputs and used MSE loss for training. For our per-
centage and binary targets, we added a Feedforward (4 units, 
Sigmoid activation,5 Glorot uniform initialization) layer to 
keep each of the final outputs in the [0,1] range, like we 
did with XGBoost, and used binary cross-entropy loss for 
training. In both cases, we trained the DNN with stochastic 
gradient descent using the Adam optimizer with learning 
rate = 0.0001, beta1 = 0.9, and beta2 = 0.999, with a batch 
size of 64 examples. We trained the networks for 100,000 

epochs with early stopping if the validation set loss did not 
improve over a patience value of 1,000 epochs.

All hyperparameters for XGBoost and DNN were chosen 
from a manual search of small value ranges around each 
variable. The best performing model on a held-out evalua-
tion set was chosen for our subsequent k-folds training and 
results analysis.

3  Results: initial set

3.1  Absolute performance

For each of the 7 theoretical parameter sets, there are three 
variants: linear regression (Linear), XGBoost (Boost), and 
deep neural network (DNN). The resulting 21 models are 
listed in Table 3, along with the root mean squared errors 
(RMSE) for each of the 8 target outputs in the initial set. 

Table 3  Average root mean squared error for all models, negotiation outcomes (initial dataset)

Model Name 
User Points 
RMSE 

Agent Points 
RMSE 

Nash Points 
RMSE 

Total Points 
RMSE 

User % 
RMSE 

VH % 
RMSE 

Total % 
RMSE

isPerfect 
RMSE

# of Categories 
“won” in same 
p-set.

ChattyDNN 6.31 6.54 194.92 8.26 0.128 0.111 0.128 0.446 7

SelfReflectionDNN 6.85 7.09 220.23 9.94 0.125 0.115 0.145 0.402 4

StrategicDNN 6.90 7.01 221.55 9.79 0.125 0.115 0.145 0.398 4

EverthingMakesSenseDNN 6.76 8.05 221.89 10.80 0.125 0.111 0.138 0.430 5

ChattyLinear 6.87 5.70 222.58 9.17 0.137 0.114 0.141 0.460 1

StrategicLinear 6.73 5.51 226.20 9.52 0.135 0.110 0.146 0.455 4

KnowThineEnemyLinear 6.93 6.42 227.27 9.81 0.139 0.128 0.151 0.455 4

SelfReflectionLinear 6.78 5.60 228.51 9.67 0.136 0.112 0.149 0.459 4

KnowAllLinear 6.87 5.89 230.21 9.84 0.137 0.118 0.151 0.458 5

EverythingMakesSenseLinear 7.04 5.33 235.39 9.76 0.141 0.107 0.150 0.460 3

EmotionalLinear 7.36 6.29 237.50 9.97 0.147 0.126 0.153 0.490 6

KnowAllDNN 7.53 8.24 239.77 12.00 0.136 0.123 0.148 0.453 3

KnowThineEnemyDNN 7.33 8.12 240.66 11.89 0.136 0.125 0.150 0.451 4

EmotionalDNN 7.75 7.22 241.96 11.32 0.141 0.126 0.149 0.487 3

EverythingMakesSenseXGBoost 7.08 6.03 244.36 10.31 0.157 0.117 0.173 0.496 0

ChattyXGBoost 7.91 6.29 256.02 10.86 0.168 0.137 0.161 0.552 0

KnowThineEnemyXGBoost 7.66 6.68 260.74 10.62 0.160 0.142 0.155 0.579 0

SelfReflectionXGBoost 7.98 6.93 262.37 12.01 0.175 0.141 0.184 0.492 0

StrategicXGBoost 7.50 6.87 263.01 11.98 0.153 0.131 0.169 0.492 0

KnowAllXGBoost 7.78 6.64 263.62 10.82 0.167 0.140 0.172 0.576 0

EmotionalXGBoost 8.50 6.96 275.39 11.65 0.183 0.145 0.158 0.617 0

Blue items are the lowest (best) values in the column, while yellow items are the second lowest in the column. The final column compares each 
model type to the others of the same parameter set: e.g., “ChattyLinear”–“ChattyDNN”–“ChattyXGBoost” and displays the amount of catego-
ries in which it was the top performer

5 A sigmoid serves our purposes to force 0–1 range to form a per-
centage. A different approach, such as softmax, would force a per-
centage across all outputs so they must sum to 1. We are looking to 
get a percentage for each output individually, so we chose the sig-
moid.
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RMSE was calculated from the average across each of the 
10 folds in k-folds cross validation. The table also highlights 
the best performing model for each output in blue, and the 
second best in yellow (ties are allowed). We particularly note 
the top performing model: ChattyDNN, a neural network 
model that is the best performer in 4 out of 7 categories (and 
second best in 1). However, in general, the linear models 
performed better when compared to the same parameter set 
(e.g., EmotionalLinear vs. EmotionalXGBoost vs. Emotion-
alDNN). Indeed, when compared triple-wise in this manner, 
XGBoost models were never the top performers (see final 
column in Table 3).

Generally speaking, the models explained a reasonable 
amount of the variance in the results. The RMSE of Chat-
tyDNN for agent points was 6.31. Since the negotiations 
involved between 65 and 70 total points, this prediction 
implies a 95% confidence interval within 12.62 points. Given 
the relative simplicity of the measures involved (ChattyDNN 
did not analyze the content of messages at all—only their 
quantity), this result is encouraging.

3.2  Comparative performance

ChattyDNN outperforms its baseline linear regression coun-
terparts in every category (except agent points, where Chat-
tyDNN is worse than ChattyLinear). ChattyDNN also per-
forms adequately in one of the categories in which it is not 
in the top two—specifically ChattyDNN is the top 3 models 
for agent point %. Indeed, ChattyDNN performs quite well 
even accounting for its relative shortcomings in predicting 
agents’ points.

In general, performing traditional significance testing 
when comparing models based solely on their RMSE is sta-
tistically difficult. However, by examining each fold of the 
models as a separate data point (and extracting the RMSE 
from those folds), we can craft a rudimentary univariate 
ANOVA on each model’s total scalar target performance.

To accomplish this, we first report the estimated “mean 
of errors” for each of the 10 folds, for each of the 21 models, 
and report this in Fig. 1. Each model is shown with their 
performance on all scalar targets z-scored, and then aver-
aged (user points, agent points, total points, and Nash 
points). This results in a normalized combination of each 
of the 4 scalar targets. ChattyDNN is the outlier in terms of 
best performance. The process is thus as follows:

1. Determine the error for each of the 10 folds, on each 
model, for each target

2. Z-score those 10 data points for each target.
3. Average the 4 targets together.

In addition to comparing each model individually, we 
conducted a 3 (learning type) by 7 (parameter set) ANOVA 
analysis to determine if any particular parameter set or learn-
ing algorithm dominated. Indeed this appears to be the case 
(as seen in Fig. 2). There is a main effect of learning type on 
scalar target accuracy (p < 0.001). This effect is driven by the 
XGBoost models, which performed poorly compared to the 
other types, and the linear models which performed better, 
in general, than any other type.

3.3  Additional analysis

When analyzing a new data set, there is a tendency to 
include all relevant features (even when accounting for 

Fig. 1  10-Fold means of error for all models, average of all Z-Scored 
scalar targets (lower is better)

Fig. 2  10-Fold means of error for model classes, average of all 
Z-Scored scalar targets (lower is better)
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overfitting). One danger in including all features is that with-
out theory-driven caution, the process can lead to mislead-
ing results. To showcase this problem, we included a final, 
eighth parameter set called EMSTime, which included all the 
parameters from the standard EMS, but additionally included 
gameEndTime as an input variable. For these models’ per-
formance, gameEndTime proved to be a very valuable 
parameter—EMSTimeBoost outperformed ChattyDNN on 
a number of target outputs. From a theoretical perspective, 
this is not particularly surprising—gameEndTime is a post-
hoc measure that likely indicates how difficult it was to reach 
agreement in the negotiation. Being a post-hoc parameter, 
gameEndTime is furthermore unsuitable for online learn-
ing methods. Removing this single metric (thus resulting 
in the standard EMS models) leads to substantial perfor-
mance degradation—ChattyDNN tends to dominate all the 
EMS variants on the majority of output targets. We revisit 
this concept again in the full dataset discussion below, but 

instead of using gameEndTime as an input, we reinterpret 
it as a prediction target.

4  Results: full set

4.1  Performance changes

We again examined the 21 models, but for the full dataset 
of 943 interactions. These results are now listed in Table 4, 
which includes only the RMSE of the percentage targets 
(since the scalar targets are less meaningful across differing 
studies due to their lack of normalization). Again, this table 
also highlights the best performing model for each output in 
blue, and the second best in yellow (ties are allowed).

In terms of absolute performance, we see compa-
rable performance for the targeted measures in Chat-
tyDNN, although the error rate for isPerfect (detecting 

Table 4  Root mean squared 
error for all models, comparable 
negotiation outcomes (full 
dataset)

Model Name
User % 
RMSE

Agent %
RMSE

Total % 
RMSE

isPerfect 
RMSE

Game Length 
RMSE

KnowAllLinear 0.103 0.109 0.091 0.429 105.59

SelfReflectionLinear 0.103 0.108 0.094 0.439 94.49

KnowThineEnemyLinear 0.103 0.109 0.091 0.439 105.53

EverythingMakesSenseLinear 0.104 0.108 0.092 0.439 93.49

StrategicLinear 0.105 0.109 0.093 0.447 121.12

ChattyLinear 0.104 0.109 0.092 0.453 96.77

EmotionalLinear 0.105 0.108 0.094 0.461 122.65

SelfReflectionDNN 0.217 0.189 0.216 0.520 8518.39

KnowAllDNN 0.183 0.184 0.114 0.521 7976.32

EverthingMakesSenseDNN 0.204 0.194 0.257 0.525 8097.96

ChattyDNN 0.132 0.136 0.145 0.526 8686.70

KnowAllXGBoost 0.126 0.137 0.105 0.535 110.49

EverythingMakesSenseXGBoost 0.120 0.122 0.108 0.544 87.40

KnowThineEnemyDNN 0.164 0.161 0.116 0.553 9131.89

KnowThineEnemyXGBoost 0.122 0.130 0.109 0.555 111.86

StrategicXGBoost 0.114 0.124 0.110 0.558 119.20

SelfReflectionXGBoost 0.128 0.125 0.119 0.560 88.62

EmotionalDNN 0.151 0.174 0.116 0.573 6446.58

EmotionalXGBoost 0.123 0.124 0.111 0.579 128.59

ChattyXGBoost 0.125 0.144 0.116 0.596 101.68

StrategicDNN 0.143 0.193 0.131 0.607 7763.38

Blue items are the lowest (best) values in the column, while yellow items are the second lowest in the 
column
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whether or not the negotiation will end with a Pareto 
Optimal solution) has substantially increased. Indeed, 
the most improvement is seen among the simpler, linear 
models, with KnowAllLinear, SelfReflectionLinear, and 
KnowThineEnemyLinear becoming the top performing 
models in the larger dataset. On average, KnowAllLinear 
has improved by 19.1%, with its average mean squared 
error on percentage targets decreasing from 0.066 to 
0.054.

There are a few possible takeaways from this change. 
The simplest explanation is that the linear models per-
form adequately on smaller datasets, but improve even 
quicker to their DNN counterparts. The full dataset more 
than doubles the size of the initial dataset, and it could be 
that this increase in data points allows the linear models 
to overtake the DNNs. This interpretation is supported 
by the fact that the DNNs do not degrade (much) in per-
formance as more data points are added. It is somewhat 
unexpected, however, as DNNs traditionally do improve 
in performance when given more data. It is likely that the 
DNNs have already “peaked” earlier, and the linear mod-
els continue to benefit from additional data for longer. 
Given the same cross-fold validation procedure is fol-
lowed for both the full and initial datasets, this is encour-
aging, as it means that choosing to use DNN models early 
on does not come at much penalty as new data is added—
even if that data has moderately different characteristics 
from the initial.

The second primary interpretation is more speculative, 
but deals with the fact that the top-performing models in 
the full dataset all include more parameters than the pre-
vious top-performing models. Notably, KnowAllLinear, 
KnowThineEnemyLinear, and EverythingMakesSenseLin-
ear all perform better than ChattyLinear in this expanded 
dataset. This is perhaps unsurprising—all of the priors 
included in these models were added because there is some 
theoretical basis behind them. With a larger dataset, it is 
reasonable to assume that weaker but still present correla-
tive effects may be teased out of these more complex mod-
els, allowing them to pull ahead of the relatively simple 
ChattyLinear. In short, in smaller datasets, simple models 
like ChattyLinear may be superior since they are likely 
to find the strongest effects and avoiding overfitting on 
minor parameters. However, complex models, when fed 
enough data, may capture weak but present correlative 
effects, leading to their ascendency.

Regardless, it is important to note that KnowAllLinear 
still did outperform EverythingMakesSenseLinear (the 
superset model), which indicates that the previous obser-
vation (more parameters is not always better) still holds.

4.2  Analyzing negotiation length

One additional target value is analyzed in the full dataset that 
was not previously analyzed in the partial dataset. Due to 
evidence that suggests that the amount of time spent working 
out a deal may have a correlation to the quality of the deal 
achieved, we aimed to predict the total length of the negotia-
tion interaction (i.e., the time until agreement was reached) 
using the aforementioned models.

The results indicate that there was varied success in pre-
dicting this time. However, the best models for predicting 
game length showed little overlap with the best models for 
the other prediction targets. Indeed, contrary to Fig. 2, the 
best two models for predicting game length were XGBoost 
models (EverythingMakesSenseBoost and SelfReflection-
Boost). The RMS accuracy even with these two was not 
highly accurate, but this result is informative; the best model 
type for predicting temporal aspects of the interaction may 
well differ from the type best used for predicting the qual-
ity of the interaction. Future work that examines potential 
mediation or moderation effects of time on outcome would 
be welcome to disentangle this relationship.

5  Discussion

5.1  Initial set

The implications of the results in this work for those primar-
ily interested in negotiation behavioral results indicate the 
importance of rapport (or at least, message exchange) to 
negotiated outcomes. Yet, more broadly for system design, 
they also have methodological implications for the design of 
human-agent systems and studies. Social computing prob-
lems such as human–computer negotiation are plagued by 
uncertain inputs, massive numbers of input variables, and 
relatively small datasets. These problems make them tenu-
ous targets for much of the current work in machine learn-
ing. Furthermore, the domains in which social problems are 
most relevant are these where explainable AI and model-
driven approaches are most valued (for ethical/legal/com-
mercialization reasons). Therefore, approaches which can 
both leverage current machine learning approaches to pro-
cess data, but can also “initialize their priors” using expert 
knowledge are of particular interest. Certainly, even if purely 
automatic learning solutions were tenable from a societal 
perspective, the performance of automatic feature selection 
is not always perfect. Indeed, as pointed out by Lucas et al. 
[21], domain knowledge can inform multimodal fusion by 
assisting with feature selection, and often models with fewer 
features can outperform those with more features.

The results of this work are largely in line with these 
intuitions. We did achieve generally good performance, with 
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most models predicting user score within half a dozen points 
or so (12–18% of the total). This shows us that the approach 
is a reasonable predictor, and supplies the aforementioned 
benefits with regards to explainability and theory.

We can examine the best-performing parameter set, 
Chatty, in two ways. This model uses only three param-
eters (withholding, numUserMsg, and numAgentMsg). 
Chatty relies on the observation that communication is key 
to building rapport in negotiation, and this increased rapport 
and understanding of opponent preferences can lead to an 
increase in joint value.

In the traditional approach, we can analyze this variables 
as a regression-based problem. We can conduct follow-up 
analysis on a manually-constructed regression model, which 
shows that there are indeed significant main and interaction 
effects for this model on both total points and agent points. 
While a simple F-test indicates that the model performs bet-
ter than a model that assumes the mean (not a particularly 
high bar), the presence of interaction and main effects hint 
at the idea that the Chatty parameter set has hit on some real 
behavioral results.

But, we observe from the results that the absolute best 
model is ChattyDNN, which outperforms its linear cousins 
in our initial results. ChattyDNN, which is based on theory-
driven intuition about communication, is a neural network, 
not a standard regression model. As such, it represents a 
hybrid approach to hypothesis testing and modeling. And 
we can see that this second approach provides better perfor-
mance than our initial approach, given ChattyDNN’s good 
performance at predicting Nash points, total points, and 
total point %.

Still, ChattyDNN is not particularly successful at predict-
ing the points that the agent receives, being outperformed 
by a number of different models in that single category, 
but performs well elsewhere. Most notably, ChattyDNN 
outperforms its strict superset models in most categories. 
EverthingMakesSenseDNN, performs worse than Chat-
tyDNN over most of its outputs. Given that ChattyDNN is 
an expert-inspired model, rather than one that was directly 
learned, this validates our hybrid approach. In an (increas-
ingly common) example of “more parameters is not better”, 
it outperforms a number of more complicated models, while 
having a theoretical groundwork based on the idea of the 
importance of information exchange.

However, ChattyDNN does not merely outperform more 
parameter-heavy models. It also outperforms its different-
algorithm counterparts, ChattyBoost and ChattyLinear. One 
potential reason the DNN outperforms both XGBoost and 
linear regression for the Chatty parameter set is that its inter-
nal parameters are trained jointly across all target outputs 
of the same type—scalar or percentage and binary—while 
the other models have to train a single model for every tar-
get output. This allows for complex nonlinear dependencies 

within parameters to be affected by the joint training across 
potentially related target outputs. In other words, the DNNs 
have two different output layers: one for predicting the abso-
lute targets, and one for the percentage and the binary output. 
However, the models use the same hidden layers. The other 
models, on the other hand, are trained individually for each 
output, so one individual "model" is trained based on the 
same input but for the 8 different output targets. DNNs can 
therefore profit from the correlations between the outputs, 
whereas the other models cannot. Still, mostly, the best mod-
els are Linear, not DNN. So, ChattyDNN’s abnormal success 
remains notable (and somewhat difficult to pin down).

Nevertheless, the implications of ChattyDNN’s success 
are twofold. First, it is notable that reasonable prediction 
of outcomes is possible with an expert-informed parameter 
set (e.g., the Chatty parameter sets in general) which is then 
fed into an ML algorithm. What we have indicated with this 
result is that indeed, automation of lessons from traditional 
psychometric significance testing can lead to good results. 
This lends support to our approach in general. Secondly, we 
provide evidence of a DNN providing better results than 
XGBoost or a learned linear regression. This speaks to the 
potential benefit of nonlinear models learning complex 
relationships between the raw inputs, and (perhaps more 
strongly) about the improperness of using XGBoost, which 
overall performed poorly.

5.2  Full set

These results are complicated by the addition of new data 
to the analysis. The full dataset, which includes two new 
studies with different structures to the original allows us to 
test the robustness of these models by increasing the dataset 
size by adding new data that may not share the same context.

We are able to conclude that the baseline linear models 
perform quite admirably in this new context. Whether this is 
due to some deficiency in the DNNs when new data is added 
(e.g., due to overfitting) or due to the ability of linear models 
to achieve superior performance gains to DNNs when fed 
enough data is, as of yet, undetermined. However, we do 
believe these results clearly delineate the benefits and draw-
backs of these different methods depending on the targeted 
prediction variables as well as the data size.

To formalize this, we compared the effectiveness of two 
very different machine learning algorithms across all the 
models in our social negotiation data. From the results, 
it is not yet clear the “right” DNNs will always reliably 
outperform linear regression on the whole, although the 
best model in the initial set, ChattyDNN, did. Rather, the 
results seems to indicate that the “safe” bet is often a lin-
ear model, which generally performed well. Still, while 
linear models may be the overall good choice in this prob-
lem, the best performing model is often determined by the 
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particular parameter set and the prediction targets. And, as 
analysis of the full set reveals, these lessons evolve with 
the size of the data set as well.

However, we did show the superior predictive model for 
each variable was almost always a linear or DNN model in 
both the initial and full sets. We believe this speaks to the 
questionable efficacy of the XGBoost models in this appli-
cation. In particular, every XGBoost model performed 
substantially worse than the best model for every variable 
in both sets, with the exception of the game length predic-
tion in the full set. Moreover, the top performing models, 
as judged by the amount of variables predicted with the 
least error, were all linear models in the full dataset. The 
comparison between XGBoost and DNN models in the 
full set is less clear, since some outperform each other on 
particular variable.

What remains clear, however, is that in this result, a 
hybrid approach to analysis can yield reasonable pre-
diction accuracy, especially in domains that have data-
sets with features similar to human-agent negotiation. 
Naïvely-implemented approaches may simply contain too 
many parameters, such as the “kitchen sink” approach of 
the EverythingMakesSense parameter set. In our analy-
sis, these EMS models were not the top-performing ones 
(although EMSLinear did show improvement in the full 
set). Our hybridized approach benefits from prior knowl-
edge of the domain, and ensures we get the most “value” 
for each parameter that is added.

Moreover, we have also demonstrated the power of 
learned models over purely hand-tuned ones. Manual regres-
sion testing of models with too many parameters is impracti-
cal at best (and impossible at worst). Machine learning-aided 
analysis isolates areas of particular interest, and allows post-
hoc analysis or follow-up experimentation that will further 
clarify the mechanisms of parameter sets that perform well. 
This also dovetails nicely with the idea of explainability, 
since these models have theoretical basis.

Of course, such approaches have limits. In cases when 
parameter-heavy neural nets like EverythingMakesSens-
eDNN do outperform those with fewer parameters like 
ChattyLinear, there is not an easy theoretical explanation 
as to why. And, even when a model performs well, the 
direct mechanism by which it does may still be hidden. Our 
approach does not claim to be panacæa for explainability—
but hybrid approaches such as ours do provide a starting 
point to further experiments. In this particular case, it allows 
us to target particular parameters that are contained in high-
performing models that are omitted in lower-performing 
models and design specific experiments around them. As 
such, hybrid approaches may be highly suitable for early/
mid-stage research, wherein several competing mechanisms 
are proposed, evaluated, and then pursued. Compare this 
approach to one in which no expert-tuned parameters were 

provided; in which case follow-up experiments are vastly 
less directable.

Therefore, given that this hybridized approach actively 
directs further research and analysis to areas where mecha-
nisms may exist, its importance should not be underesti-
mated. In future work, the hybrid approach can be used 
both as a mechanism for the analysis of existing human-
agent datasets, as well as a tool for the design of agents that 
use online, hybrid expert-learned systems for performing 
negotiation.
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